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Abstract

This paper presents a high-level design for a reliable com-

puting platform for real-time control applications. The

design tradeo�s and analyses related to the development

of a formallyveri�ed reliable computing platform are dis-

cussed. The design strategy advocated in this paper re-

quires the use of techniques that can be completely char-

acterized mathematically as opposed to more powerful

or more 
exible algorithms whose performance proper-

ties can only be analyzed by simulation and testing. The

need for accurate reliability models that can be related

to the behavior models is also stressed. Tradeo�s be-

tween reliability and voting complexity are explored. In

particular, the transient recovery properties of the sys-

tem are found to be fundamental to both the reliability

analysis as well as the \correctness" models.

Key Words { Fault tolerance, formal methods, ma-

jority voting, computer architecture, transient faults

Introduction

Researchers at NASA Langley Research Center (LaRC)

have initiated a major research e�ort towards the devel-

opment of a practical validation and veri�cation method-

ology for digital 
y-by-wire control systems. The vali-

dation process for such systems must demonstrate that

these systems meet stringent reliability requirements.

Flight critical components of commercial aircraft should

have a probability of failure of at most 10�9 for a 10 hour

mission [1]. Under such severe reliability requirements,

design errors, also referred to in the literature as generic

errors, can not be tolerated. Thus, the validation prob-

lem for life-critical systems can be decomposed into two

�presented at the 6th Annual Conference on Computer Assur-
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major tasks:

1. Quantifying the probability of system failure due to

physical failure.

2. Establishing that design errors are not present.

Since current technology cannot support the manu-

facturing of electronic devices with failure rates low

enough to meet the reliability requirements directly,

fault-tolerance strategies must be utilized that enable

the continued operation of the system in the presence of

component failures. The �rst task must therefore cal-

culate the reliability of the system architecture that is

designed to tolerate physical failures. The second task

must not only establish the absence of errors in the con-

trol laws and their implementation, but also the absence

of errors in the underlying architecture that executes the

control laws. We are exploring formal veri�cation tech-

niques as the primary candidate for the elimination of

such errors.

The major goal of this project is to produce a veri�ed

real-time computing platform (both hardware and soft-

ware) which is useful for a wide variety of control-system

applications. This paper presents the design issues and

tradeo�s that were made to facilitate the veri�cation of a

reliable computing platform that schedules and executes

the application tasks of a digital 
ight control system.

The details of the veri�cation activity including detailed

speci�cations and proofs accomplished during the �rst

phase of the project are available [2, 3].

A Science of Reliable Design

Mathematical reliability models provide the foundation

for a scienti�c approach to fault-tolerant system design.

Using these models, the impact of architectural design

decisions on system reliability can be analytically evalu-

ated. Reliability models are constructed that abstractly

account for all possible physical failures and all sys-

tem recovery processes. In the analysis, physical fail-
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ures must be enumerated and their failure rates deter-

mined. The fault arrival rates for physical hardware de-

vices are available from �eld data or empirical models

[4]. The fault recovery behavior of a system is depen-

dent upon the particular fault-tolerant system architec-

ture and must be determined by experimentation or by

formal analysis.

The justi�cation for building ultra-reliable systems

from replicated resources rests on an assumption of fail-

ure independence among redundant units. This is a rea-

sonable assumption when the redundant units are elec-

trically isolated (i.e. located in separate chassis and us-

ing di�erent power supplies). The alternative approach

of modeling and experimentally measuring the degree of

dependence is infeasible, see [5]. The unreliability of a

system of replicated components with independent prob-

abilities of failure can easily be calculated by multiply-

ing the individual probabilities. Thus, the independence

assumption provides the means to obtain ultra-reliable

designs using moderately reliable parts. Complex sys-

tems constructed from components with interdependen-

cies (e.g. due to shared memories, shared power sup-

plies, etc.), can be modeled (assuming perfect knowledge

about the failure dependencies) and the system relia-

bility can still be computed. Of course, the reliability

models can become very complex and the analysis in-

tractable.

The validity of a reliability analysis depends critically

upon the accuracy of the reliability model. If the relia-

bility model omits certain failure mechanisms or the rep-

resentation of the recovery behavior is overly optimistic,

the predicted probability of failure is inaccurate. This

might occur, for example, if there are errors in the logi-

cal design or in the implementation of the fault-recovery

strategy. Any validation methodology must address the

\correctness" of the reliability model with respect to

the actual implementation. Ultimately, a mathemati-

cal mapping between the implementation and the model

must be constructed. Thus, the two validation tasks are

essentially demonstrations of \correctness". Although

the quanti�cation task involves reliability models, ex-

perimental data, and numerical calculation, model cor-

rectness must also be established.

The Role of Formal Methods

A major di�erence between the development e�ort pre-

sented in this paper and most other e�orts is the use

of formal methods1. This approach is born from the be-

lief that the successful engineering of complex computing

systems will require the application of mathematically

1The SIFT [6] project was the �rst attempt to apply formal
methods to the problems of digital 
ight control.

based analysis analogous to the structural analysis per-

formed before a bridge or airplane wing is built. The

applied mathematics for the design of digital systems is

logic, just as calculus and di�erential equations provide

the mathematical tools used in other engineering �elds.

It is often assumed that the application of formal

methods is an \all or nothing" a�air. This is not the

case. Di�erent levels of application are both possible

and recommended. The following is a useful taxonomy

of the degrees of rigor in applying formal methods:

Level 0: No application of formal methods.

Level 1: Formal speci�cation of the system.

Level 2: Paper and pencil proof of correctness.

Level 3: Formal proof checked by mechanical

theorem prover.

Signi�cant gains in assurance are possible in existing

design methodologies by formalizing the operating as-

sumptions and constraints, the speci�cation, and the im-

plementation of a system in some formal mathematical

notation. Experience shows that application of formal

methods to level 1 alone often reveals inconsistencies and

subtle errors that might not be caught until much later

in the development process if at all.

The use of paper and pencil proof in the design pro-

cess adds a second level of assurance in design correct-

ness. The search for proofs forces explicit consideration

of the relationships between the implementation and the

speci�cation and often reveals forgotten assumptions or

incorrect formalizations.

A proof of correctness is only as good as the prover.

Even stronger evidence for correctness can be established

by forcing proofs through a mechanical theorem prover.

This is level 3 application of formal methods. The pro-

cess of convincing a mechanical prover can be viewed as

the process of developing an argument for an ultimate

skeptic who must be shown every detail.

What is classi�ed here as level 1 and level 2 formal

methods are being widely applied in the U.K. In the

software domain, the U.K. Ministry of Defense has ten-

tatively mandated application of formal methods for all

safety critical systems [7]. Our work can be classi�ed as

a level 2 application of formal methods.

A View of Digital

Flight Control Systems

The control system architecture for aerospace vehi-

cles can be viewed as hierarchical as shown in �gure 1.

Each level in the hierarchy represents a di�erent aspect

of the design process and entails di�erent validation and

veri�cation issues. The top-level represents the aero-

dynamic properties of a rigid body controlled by ma-

neuverable surfaces. The second level represents the
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Figure 1: Digital Flight Control System Hierarchy

continuous-time feedback-control functions that operate

on the aerodynamic vehicle. The third level represents

the block-diagram speci�cation of the control laws. The

fourth level represents the implementation of the control

laws in an executable programming language. The �fth

level describes the system that dispatches the control-law

code on a set of redundant hardware in a manner that

provides fault tolerance. The sixth level represents the

hardware components of the system. In this project, the

design and veri�cation issues at the bottom two levels of

the hierarchy are being explored.

Figure 2 illustrates how the hierarchy above can be

further re�ned2.

Traversing the horizontal hierarchy at the coarsest

level of abstraction reveals the control application do-

main, which is built on the reliable computing platform.

These in turn view the state of the aircraft through

the sensor/actuator network. Each of these abstractions

is decomposed into sublevels discussed below. The ra-

tionale for choosing the major system interfaces at the

points noted in �gure 2 is based on notions of reusabil-

ity, a partitioning of the areas of technical expertise, and

the interfaces found in most computing systems in use

today.

The control application domain abstraction isolates

one of the two main application-speci�c aspects of the

control system. The most abstract view at this level

might be a system of continuous di�erential equations

modeling the control surfaces and aerodynamic proper-

2In the graphical convention adopted here, non-overlapping

boxes contained within another box denote horizontal hierarchy
or system interfaces. The dependence of an interface on a resource
is indicated by placing the dependent box above the box denoting

the resource. Adjacent boxes at the same level within the hori-
zontal hierarchy indicate independent resources. Thus, in �gure 2
the operating system is dependent on the replicated processors for
implementation; however, the individual processors are not depen-
dent on one another. Nested blocks denote vertical hierarchy or
successive levels of abstraction.

ties of the aircraft. Abstractions below this level include

the block-diagram speci�cation of the control laws and

at the lowest level, implementation of the control laws

in an executable programming language on the underly-

ing reliable computing platform. Obviously, correctness

at each level is as important as the correctness of the

computing platform. Formal methods can have an im-

pact on correctness in areas in the control application

domain; however, these issues are not addressed here.

The reliable computing platform dispatches the

control-law code for execution on the underlying hard-

ware and provides the interface to the network of sensors

and actuators. Traversing the hierarchy within the reli-

able computing platform abstraction reveals two boxes,

one representing the operating system and the other rep-

resenting the underlying replicated processors. The op-

erating system provides the interface to the bottom level

of the control application domain, the application code.

The replicated processor level provides the physical in-

terface to the sensor actuator network.

The third component of the control system is the net-

work of sensors and actuators. Like the control applica-

tion domain, the sensor actuator network is highly ap-

plication dependent. Because of the application-speci�c

nature of this part of the system, we consider this compo-

nent to be outside of the reliable computing platformand

do not speci�cally address it here, although attributes

of the sensor actuator network must be included in any

overall system reliability model.

Requirements for a

Reliable Computing Platform

The interface between the application code and op-

erating system levels determines the functional require-

ments for the reliable computing platform. The relia-

bility requirements for aircraft applications have been

determined by the regulatory agencies.

We will not explicitly address performance require-

ments here although they are a critical aspect for the

success of the system. Most of the functionality sup-

porting the system's fault tolerance will be implemented

in hardware to avoid the performance overhead su�ered

by the implementation of SIFT [8].

Functional Requirements

The following is a summary of the most important re-

quirements generated by typical aircraft control-law ap-
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plication tasks:

o Hard deadlines

o Multi-rate cyclic scheduling

o Upper bound on task execution time

o Intertask communication

The hard-deadline requirement means that a task must

be dispatched and complete within a strict time bound-

ary. In particular, the time delay between reading a

sensor and sending a signal to an actuator, the transport

delay, must be strictly less than a predetermined value.

The required periods of execution are di�erent for dif-

ferent tasks. Thus, the system must perform multi-rate

scheduling. Associated with each task is an upper bound

on execution time. If a task receives input from another

task that has the same execution period, the receiving

task must execute after the source task. Thus, within

a \period-class", there is a precedence ordering on the

tasks. The relationship between di�erent tasks with dif-

ferent execution periods, is not constrained.

Reliability Requirements

Fault-tolerant architectures use replicated hardware re-

sources and majority voting to enable continued opera-

tion of the system in the presence of component failures

due to physical faults. The operating system provides

the applications software developer a reliable mechanism

for dispatching periodic tasks on a fault-tolerant com-

puting base that appears to him as a single ultra-reliable

processor.

We are concerned with the most general type of faulty

behaviors: Byzantine or malicious faults in which a pro-

ducer can exhibit arbitrary behavior, or lie, to its con-

sumers, sending each di�erent information. In our case,

producers are processors or sensors and consumers are

other processors or actuators.

There are three basic fault-tolerance features to con-

sider in the design of the reliable computing platform.

o fault masking

o transient fault recovery

o fault detection and recon�guration

Fault masking can be accomplished by actuator vot-

ing alone. Voting internal state can also be used but

is not essential for this function. Transient-error recov-

ery requires internal voting. Fault detection can also be

accomplished by internal voting. However, alternate ap-

proaches exist. For example, self-checking pairs can be

used which shut-themselves down upon failure. In our

system, there is no fault detection function since it is

non-recon�gurable. Therefore a minimal-voting strategy

is used to 
ush the e�ects of transient faults. In other

systems where internal voting is used for fault detec-

tion (and recon�guration), the minimal-voting strategy

employed here may not be appropriate. However, if a

fail-stop strategy such as self-checking pairs is used for

fault-detection, the minimal voting approach may still

be useful and e�cient.

Field data indicates that transient faults are signi�-

cantly more likely than permanent faults [?]. If all faults

are considered to be permanent, voting need only occur



..............................................

PPHHbb
QQ

......................
..........................

��((...

(((��
���

���
�
��
%
%%
%
%%

@@
@@
Q
QQHHHXXXXhhhhhh

increased complexity

dynamic
scheduling

reconf

scheduling
static
reconfnon-reconfsimplex

both

errors
design

failure
physical

Pf

Figure 3: Balancing Reliability/Functionality Require-

ments

at the actuators to mask faults. Similarly, if all por-

tions of the dynamic state of the system were recoverable

from sensor inputs then, eventually, the e�ects of tran-

sient faults would be 
ushed from the system. Typically,

most of the state of the system is held in the aircraft it-

self, however there are data that can not be regenerated

from sensor inputs. For example, in a frame synchronous

scheduling regime, the operating system must keep track

of which frame is scheduled for execution next. This is

critical data that must be stored in volatile memory and

can not be recovered from sensor inputs.

Balancing the Requirements

The drive for increased functionality is often pursued

without regard to its impact on system reliability. The

failure probability of the system has two contributors:

(1) physical failure and (2) design 
aws.3 The graph

in �gure 3 shows the conjectured failure probability due

to each of these contributors as a function of system

complexity.

The top curve represents the total probability of fail-

ure. We have opted for a less complex system in order

to produce the best reliability.

Previous E�orts

Many techniques for implementing fault-tolerance

through redundancy have been developed over the past

decade, e.g. SIFT [6], FTMP [9], FTP [10], MAFT [11].

3Although it is infeasible to measure the contribution of the

design 
aws in the ultrareliable regime, its e�ect can be discussed
theoretically.

The techniques di�er with respect to:

o the unit of fault-isolation and recon�guration

o the voting strategy

o the level of synchronization

o the veri�cation concept

In FTMP, for example, the unit of recon�guration is a

memory module or a CPU module. In SIFT, FTP and

MAFT, the unit of recon�guration is an entire proces-

sor. In a recon�gurable system, voting can be used to

detect faults. In the architecture considered here it is

assumed that faulty processors are not removed until af-

ter the mission is over. The operating system does not

utilize error reports from the voter. However, it may be

desirable to store these reports in memory for later use

by ground maintenance personnel.

Di�erences between previously developed systems nat-

urally arose from di�erent design decisions. However,

an often overlooked but signi�cant factor in the devel-

opment process is the approach to system veri�cation.

In SIFT and MAFT, serious consideration was given to

the need to mathematically reason about the system.

In FTMP and FTP, the veri�cation concept was almost

exclusively based on empirical testing. Obviously, the

approach advocated here is one of formal rigor in speci-

�cation and veri�cation of the system.

Although several fault-tolerant real-time computing

bases have been designed for control applications [6, 9,

10, 11], only the SIFT project attempted to use formal

methods. Although many positive theoretical advances

were made, the SIFT operating system was never com-

pletely veri�ed [12]. On the positive side, the concept

of Byzantine Generals algorithms was developed [13] as

was the �rst fault-tolerant clock synchronization algo-

rithm with a mathematical performance proof [14].

Unlike the SIFT models, which did not present an op-

erational view of the scheduling function of the system,

the models described in [2, 3] deal with this functionality

in some detail. The SIFT speci�cation was given from

the perspective of an individual task. The speci�cation

de�ned the behavior of a task given inputs from other

tasks. However, it did not describe the required behav-

ior of the scheduling system. It roughly stated that if a

task were executed and given stable inputs, the output

would be correct as long as the system had enough non-

faulty hardware. Although there was an abstract notion

of execution windows for the tasks, there was no spec-

i�cation of the requirement that the operating system

must dispatch tasks according to this schedule. Thus,

the speci�cation approach was lacking in some impor-

tant ways. Nevertheless, many of the design/veri�cation

concepts used in the SIFT project have been adopted in

this project.
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Design of the

Reliable Computing Platform

Management of the replicated resources that imple-

ment the required fault tolerance is a complex systems

problem. The fundamental problem is the elimination of

all single-point failures. Clearly, a shared voter is insuf-

�cient. The voter itself must be distributed! A second

di�culty arises from the fact that a distributed voter

can only mask errors if each replicate receives the same

inputs; thus, sensor values must also be distributed to

each processor in a fault-tolerant manner. This problem

has been called the interactive consistency or the Byzan-

tine Generals problem and a number of algorithms have

been developed to perform this function [13, 15]. Fi-

nally, interactive consistency and voting in a hard real-

time environment requires synchronized actions among

the replicated processors, each of which has its own lo-

cal clock subject to clock drift. A number of distributed

clock synchronization algorithms have also been devel-

oped [14]. How these algorithms can be incorporated

into the fabric of a distributed system is at the heart of

fault-tolerant system design.

Traditionally, the operating system has been imple-

mented as an executive (or main program) that invokes

subroutines implementing the application tasks. Com-

munication between the tasks has been accomplished by

use of shared memory. This strategy is e�ective for sys-

tems with nominal reliability requirements where a sin-

gle processor can be used. For ultra-reliable systems,

the additional responsibility of providing fault tolerance

makes this approach untenable.

The operating system and replicated computer archi-

tecture are designed together so that they mutually sup-

port the goals of the reliable computing platform. A

four-level hierarchical decomposition of the reliable com-

puting platform is shown in �gure 4.

The design philosophy advocated in this paper is to de-

sign the system in a manner that minimizes the amount

of experimental testing required to validate the system

reliability models and maximizes the ability to math-

ematically reason about correctness. Ultimately, the

quanti�cation of system reliability must be made on the

basis of a mathematical model of the system and the

correctness of the model must be demonstrated. The

complexity and number of parameters that must be mea-

sured should be minimized in order to reduce the cost

of the veri�cation and validation process. The following

design decisions have been made for the initial version

of the system toward that end:

o the system is non-recon�gurable

o the system is frame-synchronous

o the scheduling is static, non-preemptive

o internal voting is used to recover the state of a pro-

cessor a�ected by a transient fault

Discussion of each point is deferred to following sections.

Frame synchronous systems are common in aircraft

control applications with hard real-time deadlines as is

static non-preemptive scheduling.

The Uniprocessor Model

The top level of the hierarchy describes the operating

system as a function that sequentially invokes applica-

tion tasks. It extends the executive model by supporting

a more sophisticated model of inter-task communication.

This view of the operating system will be referred to as

the uniprocessor model. The uniprocessor model is for-

malized as a state transition system and provides the

most abstract speci�cation of the operating system.

There are two major design issues at this level|the

choice of the scheduling strategy and the choice of inter-

task communication strategy. There are many theoret-

ical approaches to scheduling multi-rate periodic tasks.

Scheduling can be classi�ed as either (1) preemptive or

non-preemptive or (2) dynamic or static. Unfortunately,

the theoretical results cannot guarantee that the hard

deadlines will be met for any of the non-static or pre-

emptive algorithms capable of scheduling the real-time

control application tasks [16]. Consequently, all com-

mercial aircraft control systems have been implemented

using a static, non-preemptive schedule table. The in-

tertask communications problem is simpli�ed by the fact

that tasks need only receive data produced by other tasks

after they have terminated. This can be implemented by

use of data bu�ers managed by the operating system.

The non-preemptive, static approach simpli�es the

design and veri�cation of the operating system. In

some ways, this merely transfers the burden of e�cient

scheduling to the designer of the schedule table. How-

ever, there are many ways to automate the generation

of static schedule tables. It is envisioned that an o�-line

schedule generation program would be developed and
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formally veri�ed. The generated schedule table resides

in the memory of the processors in the system. It is the

responsibility of the operating system to dispatch the

tasks in accordance with the static tables.

The static table consists of a sequence of \frames".

Each frame contains a set of tasks which must be exe-

cuted. The complete sequence of frames is referred to

as a \cycle" or a \major frame". This cycle is repeat-

edly executed in response to clock interrupts. Multi-rate

scheduling is accomplished by placing a task in the table

in multiple places. This is illustrated in �gure 5.

The Synchronous Replicated Model

The second level in the hierarchy describes the operating

system as a synchronous replicated system where each

processor executes the same application tasks. The ex-

istence of a global time base, an interactive consistency

mechanism and a reliable voting mechanism are assumed

at this level. The formal details of the model, speci�ed

as a state transition system, are described in [2]. Also

at this level, a model of processor faults is developed.

Su�ce it to say here that the fault model is a worst

case model in which nothing is known about any faulty

processor.

The replicated synchronous model implements the

uniprocessor model by voting results computed on the

replicated processors. The correctness notion is based

on majority. As long as a majority of the processors

are working and a majority of them have been working

since the start of the computation, then the replicated

machine will produce the same results as the uniproces-

sor model.

The primary design decisions at this level are whether

the system is recon�gurable and where in the data path

voting is to occur.

There is ample evidence that robust implementation

of online processor recon�guration is an extremely di�-

cult problem. The Fault-Tolerant Processor (FTP) [10]

and the Fault-Tolerant Multi-Processor (FTMP) [9] pro-

vide two examples. A design 
aw has been discovered

in both FTMP and FTP which leads to the removal of

a good processor rather than the faulty processor in the

presence of a single injected fault [17, 18]. The FTP and

FTMP are both highly respected and successful research

e�orts that have pushed the state-of-the-art in fault tol-

erant system design. These errors point to the fact that

experienced computer architects, with expertise specif-

ically in areas of fault-tolerant system design, are not

immune to the problem of design 
aws.4 From these

experiences we conclude that the online fault-diagnosis

and recon�guration problem is ripe for the application

of formal methods and we intend to pursue this avenue

in future research e�orts. However, for the initial e�ort

reported on here we have chosen not to address recon-

�guration.

Voting can take place at a number of locations in the

system and associated with each choice are various trade-

o�s. Voting is dependent upon two system activities:

(1) the redundant processing sites must synchronize for

the vote and (2) single source input data must be sent

to the redundant sites using interactive consistency al-

gorithms to ensure that each processor uses the same

inputs for performing the same computations. As men-

tioned above, both these activities are assumed at this

level of abstraction.

Voting can take place at di�erent locations along the

data path with di�ering impacts on the level of clock

synchronization required. If voting takes place at the

instruction level, synchronization must be very tight. If

outputs are voted only after task execution is complete,

loose synchronization is possible lessening the computa-

tional burden required for clock synchronization. Thus,

the design decisions made at this level impact the imple-

mentation at lower levels of abstraction.

If voting occurs only at the actuators and the internal

state of the system (contained in volatile memory) is

never subjected to a vote, a single transient fault can

permanently corrupt the state of a good processor. This

is an unacceptable approach since �eld data indicates

that transient faults are signi�cantly more likely than

4It should be pointed out that CSDL never claimed to produce
error-free software. In fact, the Draper team speci�cally concen-
trated on the physical failure problem. CSDL is aware of the design


aw problem and has also become interested in pursuing formal
methods.



permanent faults [?]. An alternative voting strategy is

to vote the entire system state. This approach purges

the e�ects of transient faults from the system; however,

the computational overhead for this approach may be

prohibitive. We observe that voting need only occur for

system state that is not recoverable from sensor inputs.

This approach accomplishes recovery from the e�ects of

transient faults at greatly reduced overhead, but involves

increased design complexity.

The formal models presented in [2] provide a precise

characterization of the minimumvoting requirements for

a fault-tolerant system that purges the e�ects of tran-

sient faults. There is a trade-o� between the rate of re-

covery from transient faults and the frequency of voting.

The more frequent the voting, the faster the recovery

from transients, but at the price of increased computa-

tional overhead.

Asynchronous Replicated System

Fault tolerance is achieved by voting results computed

by the replicated processors operating on the same in-

puts. Interactive consistency checks on sensor inputs

and voting actuator outputs requires synchronization of

the replicated processors. This implies the existence of

a global time base. In the absence of technology sup-

porting manufacture of ultra-reliable clocks, electrically

isolated processors can not share a single clock. Thus,

fault-tolerant implementation of the uniprocessor model

must ultimately be an asynchronous distributed system.

Reasoning about asynchronous distributed systems is

notoriously di�cult5. Serious validation problems have

appeared in previous e�orts due to the decision to deal

with the inherent asynchrony at the application level.

The AFTI F16 provides a good example of the problems

that can arise when asynchrony is present at the appli-

cation level. There was a signi�cant problem with false

alarms caused by design oversights traced to the asyn-

chronous computer operation [20]. Also the ability to set

e�ective thresholds for the redundant sensor selection al-

gorithms was seriously hampered. Thresholds should be

tight to �lter the e�ects of failed sensors. Unfortunately,

the thresholds had to be set at 15% to eliminate false

alarms due to the asynchrony. But, with such a large

threshold a single channel failure can cause large air-

craft transients. Thus, it is advantageous to deal with

the complexities due to asynchrony at the lowest possible

level in the system. This isolates the di�culties to a sin-

gle clock synchronization function. With a fault-tolerant

clock synchronization algorithm at the base of the oper-

ating system, the rest of the operating system can be

5In fact Lehman and Shelah [19] claim the analysis of such

systems is an order of magnitude more di�cult than reasoning
about simply sequential systems
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Figure 6: Generic Hardware Architecture

designed in a synchronous manner. The advantages of

this approach are discussed in [21].

At the asynchronous replicated system level, the as-

sumptions of the synchronous model must be discharged.

In, [22] Rushby and von Henke report on the formal veri-

�cation of Lamport and Melliar-Smith's [14] interactive-

convergence clock synchronization algorithm. This algo-

rithm can serve as a foundation for the implementation

of the replicated system as a collection of asynchronously

operating processors. Elaboration of the asynchronous

layer design will be carried out in Phase 2 of the research

e�ort.

Hardware/Software Implementation

Final realization of the reliable computing platform is

the subject of the Phase 3 e�ort. The research activity

will culminate in a detailed design and prototype imple-

mentation. The hardware architecture assumed for the

implementation of the replicated system is a N-modular

redundant (NMR) system with a small numberN of pro-

cessors. Single-source sensor inputs are distributed by

special purpose hardware executing a Byzantine agree-

ment algorithm. Replicated actuator outputs are all

delivered in parallel to the actuators, where force-sum

voting occurs. Interprocessor communication links allow

replicated processors to exchange and vote on the results

of task computations. This is illustrated in �gure 6.



Overview of the Veri�cation

In [2, 3] we provide the details of the formal veri�cation

of the reliable computing platform. The proof establishes

that the I/O behavior of the replicated model is identi-

cal to the uniprocessor model. Our approach is based on

state machine concepts of behavioral equivalence, spe-

cialized for this application. All of the proofs are ac-

complished for all possible processor failures as long as

a majority of them are working at all times.

The major property that must be established in order

to prove that the replicated processor mimics the I/O

behavior of a uniprocessor is that the dynamic state of

the system is recovered after a transient fault within a

bounded amount of time.

The Reliability Models

Since reliability is a driving in
uence on the system de-

sign it is essential that the design be faithfully captured

in the reliability model. The reliability analysis must be

sound and the parameters of the model must be measur-

able.

Three validation tasks are eliminated by not using re-

con�guration. First, it is not necessary to perform fault-

injection experiments to measure recovery time distri-

butions for nonrecon�gurable systems. Second, fault la-

tency is not a concern since it does not occur as a pa-

rameter in the reliability model. Fault latency is only a

concern when one is trying to detect and remove a faulty

component. In a recon�gurable system, non-correlated

latent faults increase recovery time and correlated la-

tent faults (in the worst case) reduce the reliability of

a recon�gurable system to that of a non-recon�gurable

system. Finally, the complexity of the model is greatly

reduced|e.g., no recon�guration process, the interface

to the sensors and actuators is static as opposed to dy-

namic.

Although the architecture presented here is parame-

terized for an arbitrary number of replicated processors,

interactive consistency requires at least four processors

to tolerate a single fault. Thus, a quadruplex is the

minimum system con�guration. A simpli�ed reliability

model for a quadruplex version of the system architec-

ture is shown in �gure 7.

The horizontal transitions represent transient fault ar-

rivals. The vertical transitions represent permanent fault

arrivals. These arrive at rate �T and �p respectively.

The backwards arc represents the disappearance of the

transient fault and all errors produced by it. This is ac-

complished by voting of internal state. The presence of

this transition depends upon the proper design of the

operating system so that it can recover the state of a

6" !

��
��

��
��

��
��

��
��

��
��

��
��

�
�

�
�

�
��	

-
?

?

?

--

�p
3�p

3�T

6

54

321

�

3�p

4�p

3�T4�T

Figure 7: Reliability Model of a Quadruplex
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Figure 8: Probability of failure for di�erent values of N

processor that has been a�ected by a transient6. The

probability of system failure as a function of 1=� , the

time to recover the state, is shown in �gure 8.

The model was solved using the STEM reliability anal-

ysis program [23] for the following parameter values:

�p = 10�4=hour, �T = 10�3=hour and mission time

T = 10 hours.

The plot in �gure 8 shows the probability of failure

curve for three values of N .

Surprisingly the in
ection points of the curve do not

vary signi�cantly for the di�erent values of N . Conse-

quently, the optimal value of � does not vary much as a

6To simplify this discussion, the arrival of a second transient
before the disappearance of the �rst transient has not been in-

cluded in the model. A complete reliability analysis will include
such events.



function of N .

A Philosophical Point

The concept of system design driven by quantitative

models is certainly not new [?]. However, there is an im-

portant di�erence between the use of reliability models

to predict ultra-reliability and other quantitative model-

ing techniques. The de�nition of qualitative probability

terms in [1][Par. 9, sec. e] is

Extremely Improbable failure conditions are

those so unlikely that they are not anticipated

to occur during the entire operational life of all

airplanes of one type.

By this de�nition, such events should never be observed.

Consequently it is impossible to test the robustness of

these models against real empirical data. Some confusion

arises because empirical data are used to measure some

of the parameters of the reliability model. This is not

the same thing as an \end-to-end" test. In order to test

the accuracy of the reliability model itself, system failure

times would have to be collected and compared against

the predicted reliability. Unfortunately, one would have

to wait virtually forever to collect this data.

Although relatively simple performance models can

often be shown empirically to reasonably predict sys-

tem performance, there is no such luxury in the ultra-

reliability business. Reliabilitymodels must be conserva-

tive. This cannot be established empirically so itmust be

established by formal reasoning and mathematical anal-

ysis.
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